Boundary Layers for Self-similar Viscous Approximations of Nonlinear Hyperbolic Systems

نویسندگان

  • CLEOPATRA CHRISTOFOROU
  • LAURA V. SPINOLO
چکیده

We provide a precise description of the set of residual boundary conditions generated by the self-similar viscous approximation introduced by Dafermos et al. We then apply our results, valid for both conservative and non conservative systems, to the analysis of the boundary Riemann problem and we show that, under appropriate assumptions, the limits of the self-similar and the classical vanishing viscosity approximation coincide. We require neither genuinely nonlinearity nor linear degeneracy of the characteristic fields. June 23, 2011.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

Viscous Boundary Value Problems for Symmetric Systems with Variable Multiplicities

Extending investigations of Métivier&Zumbrun in the hyperbolic case, we treat stability of viscous shock and boundary layers for viscous perturbations of multidimensional hyperbolic systems with characteristics of variable multiplicity, specifically the construction of symmetrizers in the low-frequency regime where variable multiplicity plays a role. At the same time, we extend the boundary-lay...

متن کامل

A Uniqueness Criterion for Viscous Limits of Boundary Riemann Problems

We deal with initial-boundary value problems for systems of conservation laws in one space dimension and we focus on the so-called boundary Riemann problem. It is known that, in general, different viscous approximations provide different limits. We establish sufficient conditions to conclude that two different approximations lead to the same limit. As an application of this result, we show that...

متن کامل

Convergence Results for Pseudospectral Approximations of Hyperbolic Systems by a Penalty - Type Boundary Treatment

In a previous paper we have presented a new method of imposing boundary conditions in the pseudospectral Chebyshev approximation of a scalar hyperbolic equation. The novel idea of the new method is to collocate the equation at the boundary points as well as in the inner grid points, using the boundary conditions as penalty terms. In this paper we extend the above boundary treatment to the case ...

متن کامل

On the Convergence Rate of Vanishing Viscosity Approximations for Nonlinear Hyperbolic Systems

Given a strictly hyperbolic, genuinely nonlinear system of conservation laws, we prove the a priori bound ∥u(t, ·) − u(t, ·) ∥∥ L = O(1)(1 + t) · √ε| ln ε| on the distance between an exact BV solution u and a viscous approximation u, letting the viscosity coefficient ε → 0. In the proof, starting from u we construct an approximation of the viscous solution u by taking a mollification u ∗ φ√ ε a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011